Flexibilities of the e-ring lattice

Dong Wang, MIT-Bates eRHIC meeting, BNL, August 19-20, 2003

- 1, Basic features of current lattice
- 2, Flexibilities

Emittance control
SR level vs. polarization time
Spin rotation, utility sections
IR (flat beam, 3-beam, etc.)
Dynamic aperture

Main features of e-ring lattice

Energy: 5-10 GeV

• IR: likely round beam, 3-ring

Polarization: 5-10 GeV, longitudinal,

e- injected, e+ self-polarized

Emittance: very wide range, factor of 10+

SR: control the SR level

• Geometry: 1/3 RHIC, hori. scheme.

Circumference: 1/3 of RHIC's

Syn radiation level

we try to make it not a R&D issue P_linear ~ 1/sqt(bend radius)

Emittance control

<u>low-end emittance</u> (10 GeV case) is asking more space to accommodate many cell structures (whatever it is, FODO or others)

high-end emittance is relatively easy in both Linear optics and dynamic aperture

Parameters of current e-ring lattice

	ZDR1.0-10GeV	2003	ZDR1.0-5GeV 2003	e-RHIC 02(sup. B)	SLAC HER	KEKB HER
Circumference(m)		1277.91	1277.91	958.65	2200.00	3016.26
Energy (GeV)		10	5	10	9	8
Bending radius(m)		81.0162	81.0162	58	165	88.95
Bunch Spacing (ns)		35.52	35.52	35.71	16.8/8.4/4.2	1.97
Bunch spacing(m)		10.65	10.65	10.71	1.26	0.59
Number of bunches		120.00	120.00	90.00	415/831/1658	5000
Bunch population		1.00E+11	1.00E+11	1.00E+11		1.40E+10
Beam current(A)		0.45	0.45	0.45	3.00	1.1
Arc Cell	FODO		FODO	FODO	FODO	2.5_{π} Cell noninterlea
Harmonic Number		2028	2028	1169	3492	5120
RF frequency MHz		475.8	475.8	365.7	476	508.9
Energy loss/turn (MeV)		11.44	0.72	15.26	3.52	3.5
				(+supper B) 21.26		
Accelarting voltage(MV)		30	10	30	14	20
Synchrotron tune		0.04	0.034		0.0449	0.011
Total rad. Power(MW)		5.13	0.32	9.57(with S.B)	10.56	3.85
Syn. Rad. Power/m (KW) in Arc		9.63	0.60	18.78	10.19	6.89
from normal bend						
Self-pola. Time at 10GeV(minutes)		22.03	704.85	8.47		
Emittance-x, no coupling (n m.rad)		30.7	93.8	65	49	25
Beta function at IP (cm) y/x		10./10	10./10	10./10	1.5/50	1./33
Round Beam size at IP(um)		38.73	67.08	57.01		
Momentum compaction α		1.79E-03	9.12E-03			2.00E-04
Momentum spread		9.53E-04	4.76E-04	1.60E-03	6.00E-04	6.70E-04
Bunch length (cm)		1.72	3.2	2	1.1	0.4
S.R. damping time(x) (mS)		7.4	58.6	4.2	37.7	23
Beta tune Ux		30.579	17.808	27.48	24.62	44.51
Beta tune Uy		28.649	15.722	21.9	23.64	42.29
Natural chromaticity x,y	30nm: x=-61.80,	y=-56.388	90nm: x=-44.86, y=-35.89	x=-76, y=-53		

e-ring lattice at 10GeV

Emittance control

Emittance(h)= 36 nmrad and larger, at 10 GeV.
90 nmrad at 5GeV, (360 nmrad at 10GeV).
Conventional FODO can do the job with 1/3 RHIC circ.

Arc lattice: 76 FODO cells + dispersion suppressors.

Phase advance: 90 degrees for 36 nm at 10GeV

lower emit possible, depend on DA

~10 degrees for 360(90) nm at 10(5) GeV

Distance between quad&sextupole: 0.2 m Distance between quad-dipole: 0.6 m, still some space Space for possible emittance wigglers.

Arc: FODO lattice flexible in emit, low sextupole strength

Flexibilities in emittance

(from real e-ring lattice calculations with MAD)

SR issue, pol. time& circumference

```
For fixed beam energy, current, circumference,
P_sr_linear(kw/m) x Polar. Time = const
```

```
Bending radius in new design: ~ 81m,
SR power density= 9.6 kW/m, <SLAC B-F level!
So this is no longer an R&D issue.
Polarzation time: 22 minutes
(in 1/4 RHIC cir. design, radius need to be ~57m, in this sense, 1/3 RHIC circumference is a must.)
```

Flexibility in dipole length: 3.03m to ~3.8m (tight design) Maximum bending radius can be >100m, then ~5 kW/m and ~40 minutes, respectively.

Spin rotators: anti-symmetric

Workable from 5-10 GeV, coupling compensation included

```
Bending angle in each side of rotator: 92.29 mrad, (ending angle distribution: depends on IR designs) 1<sup>st</sup> dipole: 10.29 mrad, 2<sup>nd</sup> dipole: 15 mrad, (reduced significantly from original but still too large) 3<sup>rd</sup>&4<sup>th</sup> dipole: 33.5+33.5 mrad
```

Polarization and spin matching sending lattice to DESY. crosscheck at MIT&BNL. alternative for utility section is done: no dipole.

Utility sections for inj, RF, etc.

Non-dipole utility section is also done

Interaction Region: changing fast

- IR designs are changing fast in recent 2 weeks, see talks of <u>Abhay</u>, <u>Bernd</u>, <u>Brett</u>, <u>Chris</u>, <u>Vadim</u>, etc.
- Hard to separate yellow and blue rings, may have to accommodate 3 rings?
- Current IR:

very preliminary. less consideration on SR, maybe too conservative on quads

Lepton IR optics: round beam

Beta*: 0.1/0.1 m

- 1st quad, ~1.3m from IP, max gradient, ~13 T/m,
- combined funciton, (BNL made such one for HERA).
- 2nd quad, finish at ~4.5m(1st quad for hadron at ~5m)
- 3rd quad, ~8m from IP.
 Beta_max: ~380/380, too large, but DA is still acceptable
 Brett Parker's new design: 1st Q is 0.8m to IP and stronger
 , beta_max is ~80 m, much better!! (if detector allows)

Beam separation (hori. scheme, BINP)

PEP-II type, 0.6m long dipole next to IP + following Qs,
Abandoned, permanent magnet is not flexible
HERA-type, move first Q to 0.9 m or so from IP,
SR fan problems seen by Montag. Aperture..

e-RING IR optics (including rotator)

Flat beam: why consider it?

- about this scheme, everything is proved in HERA operation (luminosity and polarization)
- less concerns for e- beam polarization
- natural for e beam
- less constraints on optics: tunes, special insertions, etc.

Known disadvantage:

- unequal beam-beam parameters. may reduce luminosity performance a little bit. The question is how much?
- need shorter bunch (proton, e beam has no problem)

Typical parameters of elliptical(flat) beam scheme for eRHIC

A lot of choices for elliptical beam parameters. Here we propose some typical parameters for discussions.

Assuming both beams are matched, i.e.,

Luminosity and beam-beam formulae can be written as

$$L = \frac{N_p I_e}{4\pi e \varepsilon_x^p \sqrt{\beta_x^p \beta_y^p}} \qquad \Delta v_{x,y}^e = \frac{r_e N_p \sqrt{\beta_{x,y}^p}}{2\pi \gamma_e \varepsilon_{x,y}^e (\sqrt{\beta_x^p} + \sqrt{\beta_y^p})}$$

(HERA convention)

Beam sizes in IP, elliptical beam in eRHIC

A typical case: eRHIC e-p collision(10GeV vs. 250GeV) Example: a h/v beam size ratio at IP of 4:1(HERA: ~3.7:1) Not so 'flat'. In e+e- colliders, it is 10:1 to 100:1.

round beam **eRHIC**

Beta*=0.5m Beta*=0.1m proton elecrton

elliptical beam(4:1)

beta*=2.0/0.125m beta*=0.17/0.06m

Parameters for a flat beam scheme To reach same luminosity as round beam

(10 GeV e- vs. 250GeV p beams as an example for discussions)

	eRHIC (flat)	HERA (flat)	eRHIC (round)
Proton:			
Beta_x at IP	2.0 m	2.45 m	0.5 m(0.3m?)
Beta_y at IP	0.125 m	0.18 m	0.5 m
Emittance(geo.)	9 nm	5.1 nm	9 nm
Tune shift	0.0055/0.0038	0.003/0.001	0.005/0.005
Electron:			
Beta_x at IP	0.17 m	0.63 m	0.1 m
Beta_y at IP	0.06 m	0.26 m	0.1 m
Hori./ver. Emittance	100/18 nm	20/3.4 nm	43/43 nm
Tune shift	0.041/0.061	0.034/0.052	0.05/0.05

Proton bunch population is assumed to be 2E11. I_e-=450mA

For same luminosity: tune shifts exceed limits 0.05(e)/0.005(p) a little bit.

Assume same beam-beam limit apply

Luminosity is about 70% of that of round beam
with lowered e and p(ion) bunch current.

principle is same for 0.25m beta* etc.

In act still a lot of room for parameter choice

Basically,

- lower electron beam horizontal emittance, e.g., ~50 nm.
- less flat beam, e.g., 3:1 ratio in beam dimensions
- larger beta_y* for proton beam, e.g., 0.15~0.2m, then longer bunch length permitted.
- better ratio of h/v beam-beam parameters, good for lum.
- larger beta_x* and beta_y* for e- beam, relaxed IR optics

Optics at IR with flat beam

- Easier than round beam (same beam size).
- Doublet can replace triplet (if falt scheme only),
 - 1, save space for hadron quads
 - 2, help SR fan problem.
- Need to see hadron optics still.

Example of a flat beam IR optics

General questions for 3-beam IR

 Can eRHIC operate with both leptonhadron and hadron-hadron collisions at same time?

Is total beam-beam tune-shift for hadron beam OK? (0.005 from e-p, how much from p-p or Au-Au at same time?)

Can we avoid crossing angle?
 (e beam is fine, w/wt crab cavity)

Dynamic Aperture

Promising so far, 20 sigma for 10 GeV, more for 5GeV lattice(large emit)

Phase space at symmetry point, beta_x=20m, aperture>15mm.

DA, more results in FW and JC' talks

Summary

Current e-ring optics

- 1/3 RHIC circumference
- Very flexible optics, emittance varies from 30nmrad to 360 nmrad, for round and flat beam operations at 10 GeV and 5 GeV
- Spin rotators embedded
- Promising dynamic aperture
- Enlarged bending radius results in low SR level, less than SLAC PEP-II level.
- Flat beam is explored. Seems fine, especially if IR design has difficulties.
- Some open questions in IR configurations. More studies under way by several people.